
WebGroup: a secure group access control tool for the World-Wide Web

Fabien A.P. Petitcolas
Computer Laboratory, University of Cambridge

Cambridge CB2 3QG, U.K.
fapp2@cl.cam.ac.uk

Kan Zhang
UBILAB, UBS

Bahnhofstraße 45, 8021 Zurich, Switzerland
Kan.Zhang@ubilab.ch

IEEE Seventh International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises, WET ICE ’98, June
17-19, 1998, Stanford University, California, USA, pp. 301–305. IEEE Computer Society. ISBN 0-8186-8751-7.

Abstract

We present an integrated secure group access control
tool to support workgroups on the World-Wide Web. The
system enables user authentication, encrypted communica-
tion and fine-grained group access control. The tool com-
prises two proxies: one running on the server side and the
other one on the client side. Typically the browser sends a
query to the client side proxy which contacts the server side
proxy for authentication, session key exchange and checking
of access rights. The server side proxy finally forwards the
request to the HTTP server. Our tool is completely trans-
parent to the user and compatible with any Web server and
browser. It can also become part of a firewall configuration.

1 Introduction

The World Wide Web has become the primary means
of accessing information over the Internet. More recently,
group based collaborative information sharing has received
wide attention. In order to share information effectively,
adequate security mechanisms are needed for Web access.
Specifically, the security requirements are user authenti-
cation, fine-grained group access control and communica-
tion encryption. Currently, adequate and affordable security
tools required for such use are lacking.

Existing approaches to secure access on the Web are
either inadequate or unavailable to the majority of users.
In addition, no single approach satisfies the above require-
ments in an integrated way. For example, firewalls protect
a site from illegitimate access from outside. However, cur-
rent firewalls technology do not provide fine-grained group
access control. In addition, firewalls cannot be universally
applied. Small companies or individual users may not be
able to afford the installation and maintenance of firewalls.

Some solutions for authorizations on the Web employ
advanced distributed computing infrastructure, which is not

widely available to users. For example, DCE Web [4] pro-
vides a sophisticated authorization mechanism along with a
structure for organizing groups of Web users and resources
under coherent security and other administrative policies.
However, DCE Web requires that both browsers and servers
be DEC-capable, i.e. capable of using a set of sophisticated
distributed computing technologies, based on OSF-DCE.

Some security solutions provide user authentication and
encryption but not group access control, e.g. Secure
HTTP [8] and SSL [2]. Others focus on group access con-
trol but lack encryption of communication, e.g. CERN
httpd [5], a capability-based authorization model by Ka-
han [3]. No single approach provides adequate protection
for group based collaborative information sharing.

Although one could use a combination of SSL and HTTP
basic authentication, our solution provides more features
that this simple combination. It can be used by people who
do not have access to a secure web server or whose browser
does not support SSL. It also provides access control at the
file level rather than directory and much better users and
groups administration since on the one hand authentication
is done per user and it is very easy to define groups and
subgroups of users.

In this work, we present an integrated secure group ac-
cess management tool that provides user authentication,
fine-grained access control and communication encryption
in a seamless way. The tool is compatible with any Web
server and browser. It is easy to use and available to every-
one. Moreover, it can become part of a firewall configura-
tion.

2 Design goal

The main purpose of the tool we present here is to estab-
lish a secure communication channel between a Web server
and a Web browser and to provide secure group access fa-
cilities through the use of access control lists. This involves:

Authentication User-wise authentication

1



Access controlFine-grained access control to a single user
and to particular portions of a HTML document tree.
Unauthorised users cannot access certain pages. The
administrator can group pages into convenient subdo-
mains corresponding to the workgroups and to specify
very precisely the access rights of each user: from an
entire directory tree to a single file.

Confidentiality The entire HTTP transaction is considered
private; thus, the HTTP headers and data objects of
client requests and server responses are encrypted.

Transparency Apart from the need to login before using
the tool, the behaviour of the program should be trans-
parent.

Compatibility The tool should be able to communicate
with all HTTP servers and browsers.

3 Assumptions

We focused on attacks by outsiders. We assume that the
HTTP server is running on a trusted machine and that only
a trusted administrator can change access rights to files be-
longing to the Web server. However other users may main-
tain the site, but it is up to the administrator to ensure that
users can only read or write files they are authorized to.

The Web server must be configured such that it only
replies to requests coming from our programs. Typically
both the server and our program run on the same computer
and only our program replies to requests coming from other
computers. However if they do not run on the same machine
one must ensure that the communication between these two
processes will be secure (e.g. inside a LAN protected by a
firewall).

Finally, the Web browser must use our program as a
proxy. Basically, this proxy and the Web browser run on
the same machine. The browser sends all its requests to the
proxy and the proxy accepts only requests coming from a
specified IP address (typically the local machine). There is
no encryption between the browser and the proxy. Fig. 1, 4,
5 and 6

4 Design & implementation

The software has two different components (Fig. 1). The
Server Side Secure Proxy(SSSP) communicates directly
with the HTTP server that we want to protect and theClient
Side Secure Proxy(CSSP) is used as a proxy for the Web
browser. This latter component is able to communicate with
standard HTTP servers (i.e. server #2 in Fig. 1) and, of
course, with SSSP. Fig. 3 shows how a request from the
browser is handled by these modules during a transaction.

The program automatically writes in a log file all relevant
information about its activity: connection accepted, connec-
tion refused, Web pages required, etc.

In order to implement the authentication mechanism,
a new HTTP method has been introduced. We call it:
AUTHENTICATE.

Authenticate HTTP/1.0\r\n
ClientSide: <address>\r\n
ServerSide: <address>\r\n
UserID: <ID>\r\n
Content-length: <integer>\r\n
\r\n
<encrypted body>

The SSSP replies only to authentication requests, i.e. re-
quests that use theAUTHENTICATEmethod and system-
atically sends an error message to all other HTTP requests.
When an authentication request is received, the SSSP be-
gins an authentication and session key exchange process
with the CSSP. If successful, the subsequent communica-
tion between SSSP and CSSP is like a secure tunnel: every
received encrypted message is decrypted and forwarded to
the HTTP server; each answer of the HTTP server is en-
crypted and then forwarded to the CSSP.

In order to determine whether the CSSP is talking to the
SSSP or to a HTTP server a trial and error method is used.
The CSSP sends a first message in order to begin authen-
tication (AUTHENTICATEmethod). If the server responds
with an error status (basically an HTTP status code 4xx -
Bad request) this means that the CSSP is talking to a stan-
dard HTTP server and not to the SSSP. In this case it simply
forwards the request of the browser. In the other case, the
authentication process goes on and a secure communication
is set up.

4.1 Authentication Protocol

The authentication protocol is detailed below. This pro-
tocol is based on a shared secret (i.e. the key of the user,
KU ) and does not require any third party as [6]. Thus, we
assume that initially users can register their keys with the
administrator in a secure way. In the followingC, CP , SP
andS represent, the browser the CSSP, SSSP and the server
respectively.

C → CP Request
CP → SP CP , SP , usrID, {1, CP , SP , usrID,NC}KU
SP → CP {2, SP , CP , NC , NS}KU
CP → SP {3, CP , SP , NS , Request}KS
SP → S Request
S → SP Reply
SP → CP {Reply}KS
CP → C Reply

(1)

2



In the first message, the client sends in clear the user ID,
thus the server can look up in its list of keys to decrypt the
second part of the message. The fact that the keys are stored
encrypted on the server is not an issue here since if an at-
tacker can gain access to this file he can certainly get access
to the web pages with the same ease. Fig. 2 shows how
the keys are actually stored. A successful decryption means
only that both the server and the client share the same secret;
the user could indeed give his key and password to another
person. We cannot do better anyway. Then, the following
messages use nonces (i.e. random numbers generated for
the purpose to be fresh [1]) to prevent replay attacks, that
is attacks done by someone who recorded a previous au-
thentication protocol. Nonces are also used to create a new
session key:KS = NC ⊕ NS . In each message the ad-
dresses of the two parties are repeated as well as previously
sent data. This also helps to defeat more subtle attacks [1].
The session key is then used to encrypt all other messages,
i.e. the request of the browser and the reply of the server.

In this way, all the exchanged data between the CSSP
and the SSSP will be encrypted (even the HTTP headers).
Thus a third party would not know either the data or their
name, location, time, size, etc. However we are aware that
the communication is not perfectly private, at least, from
the point of view of the user, his ID is sent unencrypted.

Given our assumption that users can register their secret
keys with the administrator in a secure way, symmetric key
crypto-system – triple DES in the current implementaiton –
is sufficient for our two-party authentication and session key
exchange purpose. We also use DES for message encryp-
tion. Our software is built in such a way that the encryption
algorithm can be replaced easily.

4.2 Access Control

Web servers change continually to accommodate new
facilities and to adapt to changing requirements of users.
Secure group management must provide the flexibility of
adapting to these changes. Thus it should be easy to change
the profile of users and groups of users. A group model pro-
vides mechanisms for managing access control. In our case
a group consists of a set of directories and files which define
accessible domain for the group.

Our access control mechanism relies on two files: the
description of the groups and the definition of the users.
Consider for instance the following entries respectively in
the group-description file and in the user-description file:

Programmers Development /src/;/prg_news.html

Smith Programmers /users/smith/private/

They define a new group calledProgrammerswhich
is a subgroup ofDevelopmentand a userSmith belong-

ing to Programmers. This user can read its private pages
(in /users/smith/private/ and subdirectories) and
all the file readable by the members ofProgrammers(i.e.
/prg news.html and all the pages in/src/ and its sub-
directories). A special group name is reserved:default. It is
used to specify files (usually images that decorate the pages)
shared by all the users. All users belong to this group.

The procedure that checks the access rights of a given
user is such that access is denied by default. Hence it fol-
lows the rule ‘That which is not expressly permitted is pro-
hibited.’

5 Extensions and Future Work

The tool is designed to be easy to extend and to show that
access control can be added in a simple way to an existing
web site by the use of proxies. Some possible extensions
are describe below.

Add a cache to the Access Control Module. Currently,
each time a page is requested by a user the SSSP reads three
files to fetch the user key and his profile. This could be
improve by using a cache that would store the information
about the lastn connected users.

Currently HTTP open a new connection for each re-
quest. This is what we did. This implies the creation of
a new socket at each time. A modification that could im-
prove the speed of our program is to maintain the connec-
tion between the server and the client as long as it is re-
quired. Hence, more than one request could transit on the
same channel. Since most Web pages contain embedded
images, the HTML page and its images would transit dur-
ing the same connection. Hence only one process would be
required for several requests.

Another improvement could be the implementation of a
‘pre-fetching’ option. Instead of waiting the requests of the
browser, the proxy could parse the HTML page, find out
the embedded images and request them immediately to the
server.

There are two aspects in group facilities: groups of users
and groups of servers. Our current work focuses on groups
of users on a single HTTP server. IBM Research proposed
an extension to the HTTP that provides user authentica-
tion on several HTTP servers [7]. An interesting challenge
would be to integrate these two approaches: authentication
and access control of groups of users over groups of Web
servers.

6 Conclusions

In this work, we implemented an integrated tool by
which secure group based Web access can be added to ex-
isting Web servers. The tool enables user authentication, se-

3



cure communication and fine-grained access control check-
ing on per user, per group of users and per document bases.
The tool developed here is transparent and compatible with
any Web server and browser. It is readily usable for any
Web user.

Acknowledgements

Some of the ideas presented here were clarified by dis-
cussion with Mark Lomas.

References

[1] M. Burrows, M. Abadi, and R. Needham. A logic of authen-
tication. Technical report, Digital Systems Research Center,
Feb. 1989.

[2] K. Hickman. The secure socket layer. Internet Draft, Mar.
1996.

[3] J. Kahan. A capability-based authorization model for the
world-wide web. WWW3.

[4] S. Lewontin and M. Zurko. The dce web project: Providing
authorization and other distributed services to the world wide
web, www2.

[5] A. Luotonen. How to set up protected cern server, Jan. 1995.
[6] R. Needham and M. Schroeder. Using encryption for authen-

tication in large networks of computers.Communications of
the ACM, 21:993 Sq., 1978.

[7] A. H. qnd M. Kaiserswerth and P. Trommler. Secure world
wide web access to server groups. Technical Report RZ 2812,
IBM Research Division, Zurich Research Laboratory, Mar.
1996.

[8] E. Rescorla and A. Schiffman. The secure hypertext transfer
protocol. Internet Draft, May 1996.

Appendix

Web
browser

HTTP
Server

#1

HTTP
Server

#2

Internet

Encrypted

Traffic

S
S

S
P

C
S

S
P

Figure 1. Security perimeter over the Internet.

SSSP CSSP
Administrator

(A, P )A

User
(U, P )U

User ID Encrypted key
U {K }
... ...
U {K }

1 U1 PA

n Un PA

{K }U PU

shared secret
KU

Figure 2. This figure shows how the differ-
ent keys are stored. Each user has his own
key which is encrypted with his password and
stored on disk. Since the program is very
small it can be copied on a floppy disk with
the user key. On the server side, a list of user
keys are stored in an encrypted file using a
key only the administrator knows.

Server: www.foo.com

GET HTTP://www.foo.com/index.html

GET HTTP://www.foo.com/index.html

GET index.html

Client

Port: 80 Port: 8100

Port: 8080HTTP
server

Web
Browser

SSSP CSSP

Figure 3. This drawing shows how a HTTP
request goes from the Web browser to the
Web server. The HTTP server and the CSSP
should be configured such that they will not
accept any connection from the outside. We
represented the listening ports only. During
the transfer the request is modified and only
the relative path remains in the URL when it
reaches the server.

4



Figure 4. Several command line options are
available. The -? option displays them.

Figure 5. An example of launching: the user
is the administrator. The password is asked
twice in order to prevent misspelling. In this
example the SSSP is set so that it listens on
port 8101 and protects the server whose ad-
dress is xxx.xxx.xxx.xxx and which listens on
port 80.

Figure 6. When launching the program, the
user is prompted for an ID and a password.
The password will be used to decrypt the
user’s key.

5


