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Abstract— Billions of dollars allegedly lost to piracy of multi-
media content have recently triggered the industry to rethink the
way music and films are distributed on the Internet. As encryp-
tion is vulnerable to digital or analog re-recording, currently
almost all copyright protection mechanisms rely to a certain
extent on watermarking. A watermark is an imperceptive secret
hidden into a host signal. In this paper, we analyze the security
of multimedia copyright protection systems that use watermarks,
by proposing a new breed of attacks on generic watermarking
systems. A typical blind pattern matching attack relies upon the
observation that multimedia content is often highly repetitive.
Thus, the attack procedure identifies subsets of signal blocks that
are similar and permutes these blocks. Assuming the permuted
blocks are marked with distinct secrets, it can be shown that any
watermark detector is facing a task of exponential complexity to
reverse the permutations as a pre-processing step for watermark
detection. In this paper, we describe the logistics of the attack and
an implementation against a spread-spectrum and a quantization
index modulation data hiding technology for audio signals.

Index Terms— watermarking attacks, blind pattern matching,
spread-spectrum watermarking, quantization index modulation.

I. INTRODUCTION

Significantly increased levels of multimedia piracy over the
last decade have put the film and music industry under pressure
to develop and deploy as a standard improved anti-piracy
technology that can enforce copyright protection on client
media players and hence cut down the number of downloads
on peer-to-peer file sharing services such as Napster – which,
alone, has orchestrated almost 3 billion downloads of sound
clips in February 2001. Several industry-wide initiatives have
had little success in enabling client-hosted copyright screening
mechanisms [1], [2].

The problem of ensuring copyright at the client side lies
in the fact that traditional data protection technologies such
as encryption or scrambling cannot be applied as they are
prone to digital or analogue re-recording (copying). Thus,
almost all modern copyright protection mechanisms rely to
a certain extent on watermarks, imperceptive marks hidden in
host signals. In a typical content screening system, the client’s
media player searches the content for hidden information. If
the secret mark is found, the player must verify, prior to
playback, whether it has a license to play the content. By
default, unmarked content is considered as unprotected and
is played without any barriers. A key technology required
for content screening is public-key watermarking, that is, a
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marking scheme where breaking a single player or a subset of
players does not compromise the security of the entire system.
A public-key watermarking system, potentially efficient for
content screening, has been detailed in [3].

If breaking a single player does not pose a security threat,
the main target of the adversary is finding a signal processing
primitive that removes the watermark or prevents a detector
to find it. Several attack mechanisms have been largely suc-
cessful in setting up robustness benchmarks for watermarking
technologies. In fact, as soon as people have tried to develop
watermarking technologies, others have attempted to break
them. Early attacks, such as random geometric distortions [4]
relied on the fact that most watermarking algorithms are
based on some form of correlation, which itself requires good
alignment properties. Breaking this alignment usually prevents
reliable detection. In fact there are two main types of attacks:
those who attempt to remove the watermark and those who just
prevent the detector from detecting them. Random geometric
distortions fall in the second category.

Attacks in the first category usually try to estimate the origi-
nal non-watermarked cover-signal, considering the watermark
as noise with given statistic. For instance, Langelaar et al.
showed that 3×3 median filtering gives a good approximation
of original pictures in the case they have been watermarked
using spread-spectrum [5]. So far, estimate-and-remove attacks
have introduced fairly strong blurring effects but recent work
based on maximum a posteriori watermark estimation and re-
modulation has given promising results [6], [7]. In the case
of fingerprinting, another way to remove the watermark is to
use copies from different sources and mix them (either by
averaging them or concatenating pieces of them like a Mosaı̈c
attack [4]) to generate an un-watermarked copy. These are
usually referred to as collusion attacks [8], [9].

Attacks particularly tailored to specific audio watermarking
technologies include echo removal or signal restoration [10].
But these attacks are not very general as they can only
be applied to certain watermarking algorithms. An obvious
improvement for audio attacks is the equivalent of random
geometric distortions. This is in fact a mixture of time and
frequency scaling. Although robustness to this type of attack
is not fully solved in the case of images, there are some audio
data hiding algorithms that can cope with them already [11].

In this manuscript, we propose an attack which aims at
reducing the correlation of a watermarked signal with its
watermark by replacing blocks of samples of the marked signal
with perceptually similar blocks that are either not marked or
that are marked with a different watermark. We call this type
of an attack: a blind pattern matching attack(BPM). In some
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sense it is a form of a collusion attack but very different from
the ones mentioned above. BPM is a new paradigm of attacks
against generic watermarking systems. The strategy of a BPM
attack is simple:

1 partition the content into overlapping low-granularity
signal blocks,

2 identify subsets of perceptually similar blocks, and
3 randomly permute their locations in the signal.

If the number of blocks that have perceptually similar
counterparts within the media clip is small, for a successful
launch of the BPM attack, the adversary can alternatively seek
replacement blocks in an external multimedia library. The hope
is that a large percentage of the original signal can be replaced
or perturbed such that watermark detection becomes nearly
impossible. Even in the restricted case when the adversary
does not use an external replacement library and the permuted
blocks are marked with distinct secrets, it is straightforward to
prove that any watermark detector faces a task of exponential
complexity to reverse the permutations as a pre-processing step
for correct watermark detection.

Finding perceptually similar blocks of certain music or
video content is a challenging task. With no loss of generality,
in this paper we restrict our focus to audio, although video is
in many cases a much better source of repetitive content within
a single recording. For example, within a common scene both
background and objects experience geometric transformations
significantly more frequently than changes in appearance. In
general, repetition is often a principal part of composing
music and is a natural consequence of the fact that distinct
instruments, voices and tones are used to create a soundtrack.
Thus, it is likely to find similarities within a single musical
piece, an album of songs from a single author or in instrument
solos. In this paper, we explore the challenges of the BPM
attack and show how it can be launched on audio content.

II. GENERIC BPM ATTACK

The BPM attack is not limited to a type of content or to a
particular watermarking algorithm. For example, systems that
modulate secrets using spread-spectrum [12] and/or quantiza-
tion index modulation (QIM) [13] are all prone to the BPM
attack. In order to launch the attack successfully, the adversary
does not need to know the details of the watermark codec.
The adversary needs to reduce the granularity of integral
blocks of data such that no block contains enough information
from which a watermark can be identified individually. Note
that watermark detection involves processing large amount
of data (for example, reliable and robust detection of audio
watermarks requires at least several seconds of audio [11]).
Thus, blocks considered for BPM must be at least one order
of magnitude smaller than watermark length. For both audio
and video, this requirement is not difficult to satisfy as
typically blocks of 128–1, 024 transform coefficients for audio
or bitmaps of up to 64 × 64 pixels for video are considered
for pattern matching.

In the remainder of this section, we assume that coefficients
of the marked signal are replaced only with other coefficients
of the same signal. It is straightforward to redefine the attack
such that coefficients from external signal vectors are consid-
ered as a substitution base.

The host signalto be marked x ∈ RN can be modelled as a
vector, where each element xi ∈ x is a zero-mean independent
identically distributed normal random variable with standard
deviation σx: xi ∼ N (0, σx). The BPM attack is not restricted
to a particular signal model. However, we use the Gaussian
assumption to analyze certain properties of the attack.

A watermark is defined as an arbitrary pseudo-randomly
generated vector w ∈ RN , where each element wi ∈ w is a
random variable with standard deviation δ � σx. For example,
if direct sequence spread-spectrum is used for watermark
modulation then w ∈ {±δ}N . We assume that the watermark
signal w is mutually independent with respect to x. The
marked signal̃x is created as x̃ = x+w.

The BPM attack algorithm receives as input the marked
signal x̃ and outputs its modification x̃′.

A. Attack steps

The algorithm has several steps which are described below.
1) Signal partitioning: In this step, the watermarked con-

tent x̃ is partitioned into a set B of overlapping blocks, where
each block Bp represents a sequence of m samples of x̃
starting at x̃(Bp). (Bi) denotes the index of the first sample in
the i-th block Bi. For an overlap ratio of η, the total number
of blocks equals n = �N−m

1−η �. The higher the overlap, the
larger the search-space for the BPM attack. We want to select
the overlap such that:

1) consecutive blocks do not have similar perceptual char-
acteristics – this upper bound on block overlap aims at
reducing the search space – and

2) for two consecutive blocks Bp and Bp+1 starting at
x̃(Bp) and x̃(Bp+1) respectively, the block starting at x̃a,
a = [(Bp)+(Bp+1)]/2 is not perceptually similar to Bp

or Bp+1.
2) Similarity function:This is the core function of the BPM

attack. It takes as an input a pair of blocks Bp and Bq and
returns a real number φ(Bp, Bq) ≥ 0 that quantifies their
similarity. Block equality is represented as φ(Bp, Bq) = 0.
The adversary can experiment with a number of different
functions. In this section, we restrict similarity to the quadratic
euclidian distance between blocks:

φ(Bp, Bq) ≡ φ(Bp, Bq)2 =
m−1∑
i=0

[
yi+(Bp) − yi+(Bq)

]2
,

φ(Bp, Bq) � 0.

(1)

3) Pattern matching: In this step, perceptual similarities
between individual signal blocks are identified. The result of
this phase is a symmetric similarity bit-matrix S, defined as
follows:

Sp,q =

{
1 if mα2 � φ(Bp, Bq)2 � mβ2

0 otherwise,
(2)
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where α2 and β2 are parameters that denote the minimal and
maximal average similarity respectively for a pair of blocks
to be considered as substitutable. The lower limit is required
because substituting a block with another of exceptional sim-
ilarity does not affect watermark detection. The upper limit
ensures that the resulting clip has a preserved high fidelity
with respect to the marked copy.

We compute the S matrix in the following way. Initially, we
compute the block-level auto-covariance of the input water-
marked signal x̃. Then, for all pairs of blocks that correspond
to a high value of the covariance matrix, we compute the accu-
rate similarity function. The decision threshold for computing
the similarity function is determined empirically. Thus, we
are able to accurately estimate the perceptual similarity while
retaining the algorithm complexity of an FFT-based cross-
correlation at O(mn log(n)).

Note that the computational complexity of obtaining S can
be significantly improved if we consider only block swapping.
In that case, we can consider deploying a first-degree predictor
that assumes that similarity is a continuous function and
predicts that similar blocks are most often found after already
identified similar blocks.

4) Block substitution:In the final step, we create the result-
ing attacked signal x̃′ by relocating blocks according to the
realized similarities. The substitution procedure is presented
using the following pseudo-code:

1 Copy x̃′ := x̃.
2 Mark all blocks in B as unvisited.
3 Find first unvisited block Bp s.t. ∃q �= p|Sp,q = 1.
4 Let Gp be a set of indices s.t. ∀q ∈ Gp, Sp,q = 1

or q = p.
5 Let Lp be a random permutation of elements of Gp.
6 Reorder blocks of x̃′ with indices Gp according

to Lp.
7 Mark blocks with indices in Gp as visited.
8 Go to 3

The effectiveness of the BPM attack depends on several
factors. First, block size is a variable with an important trade-
off. It is difficult to find large similar blocks, so the search
clearly benefits from smaller blocks. On the other hand, it
is difficult to estimate perceptual factors in small blocks. In
addition, smaller blocks tend to preserve higher correlation
between the original and the substitute; this phenomenon
reduces the impact of BPM on the reliability of the watermark
detector. Finally, smaller blocks increase the number of total
blocks that need to be replaced, thus significantly increasing
search run-time. In the next section, we elaborate on this trade-
off in the case of audio signals.

Second, the content itself may have little redundancy regard-
less of block size and relative looseness of the upper bound
on similarity β. In that case, the adversary needs to search a
larger database of content in hope that similar sounds or pixel-
maps can be found. Finally, while the upper bound β on block
similarity for replacement is clearly imposed by the quality of
the attacked content, a variety of parameters determine the

lower bound α which allows that substituted content actually
affects the watermark detector. In the next subsection, we
analyze how parameter α impacts spread-spectrum watermark
detection.

B. Determining the lower boundα on block similarity for
replacement

Lets assume that vector x + w is deemed similar to and
replaced by vector y + v, where x and y are original
signals marked with two distinct watermarks w and v, where
w,v ∈ {±δ}m. All vectors are assumed to have the same
length as a single block: m. In addition, we assume that
the watermarks are spread-spectrum sequences, which means
that watermark w is detected in a signal z by matched
filtering: C(z,w) = zTw. If z has been marked with w,
E[C(z,w)] = mδ2, otherwise E[C(z,w)] = 0, with variance
Var[C(z,w)] = mσ2

z . Watermark is detected if C(z,w) is
greater than a certain detection threshold τ . In order to have
symmetric probability of a false alarm and misdetection, τ is
commonly set to mδ2/2.

From the requirement for two blocks to be eligible for
substitution in Eqn.2:

mα2 � ||(y + v)− (x+w)||2 � mβ2 ⇒ (3)

mα2 � E(||y − x||2) + 2mδ2 − 2E(C(v,w)) � mβ2, (4)

we can compute the expected resulting correlation E[C(y +
v,w)] under the assumption that vectors v and w are inde-
pendent with respect to x and y:1

E[C(y + v,w)] � 1
2
E(||y − x||2) +m(δ2 − α2

2
) (5)

Assuming that there exists true repetition of the original
content (y = x), then setting α � δ

√
2 would set the expected

minimum correlation to zero after substitution.

III. A BPM ATTACK FOR AUDIO

In this section, we demonstrate how the generic principles
behind the BPM attack can be applied against an audio
watermarking technology. We first describe how an audio
signal is partitioned and pre-processed for improved perceptual
pattern matching. Next, we analyze the similarity function we
used for our experiments. The effect of our implementation
of the BPM attack on spread-spectrum and QIM watermark
detection is presented in the following sections.

A. Audio processing for the BPM attack

Since most psycho-acoustic models operate in the frequency
spectrum [14], we launch the BPM attack in the logarithmic
(dB) frequency domain. The set of signal blocks B is created
from the coefficients of a modulated complex lapped transform
(MCLT) [14]. The MCLT is a 2× oversampled DFT filter
bank, used in conjunction with analysis and synthesis windows
that provide perfect reconstruction. The MCLT analysis blocks

1E[C(y,v)] = E[C(x,v)] = E[C(y,w)] = E[C(x,w)] = 0.
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Fig. 1. MCLT blocks of a signal x created starting from coefficient x0, x8, x128, and x2048. MCLT block length is 2048 frequency coefficients. As block
contents change little if the shift is smaller than 512 samples (at sampling rate of 44.1kHz), we adopt η = 0.25.

we consider here can potentially range in size from 128 to
1024 coefficients with an η = 0.25 overlap. Figure 1 depicts
how the content of an MCLT block changes as its 2, 048-long
analysis window shifts for 8, 128 and 2048 samples (content
is sampled at 44.1kHz in the example).

Each block of coefficients is psycho-acoustically masked
using an off-the-shelf model [14]. Similarity is explored
exclusively in the audible part of the frequency spectrum.
Because of psycho-acoustic masking, the similarity function in
Eqn.1 is not commutative. The second operand of the function
(substitution) is always masked with the psycho-acoustic mask
of the first operand in addition to its own masking.

Prior to masking, the frequency spectrum of the signal is
low-pass filtered to enable the detection of signal similarities
regardless of the possibly different filters applied to different
blocks (e.g., graphic equalization, signal amplification). Cep-
strum filtering of an input MCLT block y is performed as
follows:

1 z = DCT(y) Compute the cepstrum of the
dB magnitude MCLT vector y
under test via DCT.

2 pi = zi, i = 1 . . .K Store the first K cepstrum
coefficients (5 < K < 20).

3 zi = 0, i = 1 . . .K Filter out the first K cepstrum
coefficients.

4 u = IDCT(z) Reconstruct the frequency
spectrum via an inverse DCT.
Filtered frequency spectrum
u is used for similarity
computation between blocks.

After substitution, the removed signal envelope (pi = zi, i =
1 . . .K) is added to the substituted signal which is also
cepstrum filtered. It has been demonstrated that a cepstrum
filtered signal retains the level of its correlation with its spread-
spectrum watermark embedded in the frequency domain [11].
Thus, cepstrum filtering does not aid in preserving the cor-
relation that the original block had with the spread-spectrum
watermark. Figure 2 illustrates the signal processing primitives
used to prepare blocks of audio content for substitution.

Watermark length is assumed to be greater than one second.
In addition, we assume that watermark chips may be replicated
along the time axis at most for 1 second2 [11]. Thus, we

2Higher level of redundancy may enable effective watermark estimation.
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Fig. 2. Block diagram of the signal processing primitives performed as
pre- and post-processing to the BPM attack. The BPM attack has the current
block as an input and replaces it with another perceptually similar block.
Envelope restoration: the stored envelope pi = zi, i = 1 . . .K is added to
the substituted block in the cepstrum domain.

restrict that for a given block its potential substitution blocks
are not searched within 1 second.

B. Analysis of the similarity function

We performed several experiments in order to evaluate the
effectiveness of the BPM attack. The first set of experiments
aimed at quantifying similarity between blocks of several
audio clips marked with spread-spectrum watermarks at δ =
1dB. As an example, Figure 3 shows the values of the
similarity function for five 256-long MCLT blocks randomly
selected from two 30 second sub-clips taken from two different
songs of different style: rock (left sub-figure) and techno (right
sub-figure). In the example, block similarity is computed over
the 2–7kHz sub-band. This is a realistic assumption because
commonly watermark codecs hide data in a sub-band that is
not strongly distorted by compression and medium quality
low- and high-pass filtering [11]. For the illustrated data, 2 out
of 5 MCLT blocks can be substituted with other MCLT blocks
that are within β = 4dB. We make an important observation
that in many cases the detected similarity is not a result of
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0  2  4  6  8  10 12 14 16 18 20 
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0
Probability that a similar block is found within a 30sec clip

φ(A,B) [dB]

P
r[

φ(
A

,B
)<

x]

Techno
Classical
Rock
Jazz
Vocals

0 2 4 6 8 10 12 14 16 18 20
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

φ(A,B) [dB]

P
ro

ba
bi

lit
y 

de
ns

ity
 fu

nc
tio

n

Probability of a block within [x,x+0.5]dB is found in a 30sec clip

Techno
Classical
Rock
Jazz
Vocals

Fig. 4. Probability density function of the similarity function φ(A,B) on two blocks within a 30s audio clips for five different types of music: rock, classical,
pop, vocals and techno. A certain value x on the abscissa of the left subfigure represents a histogram bin from x to x+ 0.5.

coı̈ncidence, but a consequence of repetitive musical content.
For example, in the right sub-figure of Figure 3, we observe
that a set of detected pairs of blocks similar (their similarity
value is less than 4.5dB) to a pair of neighboring blocks
indexed 2080 and 2105 (all pairs circled), preserve the same
index distance as illustrated in the figure.

Figure 4 illustrates the probability that for a given 256-long
MCLT block A, there exists another block B within 30s of
the same audio clip that is within φ(A,B) ∈ [x, x + 0.5)dB
(left subfigure) or that has a similarity function smaller than
φ(A,B) � xdB (right subfigure), where x is some real
number. For a benchmark set of distinctly different musical
pieces, from Figure 4, one can conclude that within a 30s audio
clip approximately one half of all blocks can be substituted
with similar blocks that are within 5dB of noise. The prob-
ability of finding a similar block should rise proportionally

to the length of the audio clip considered for substitution.
Finally, note that electronically generated musical content (in
our benchmark a techno song) is significantly more likely to
contain perceptually correlated blocks than music that is a
performed art.

The second set of experiments aimed at quantifying the
effect of MCLT block size on the similarity function between
blocks. Figure 5 illustrates how the pdf of the similarity
function φ(A,B) changes with the increase of the MCLT
block size. Clearly, having larger MCLT blocks reduces the
complexity of computing the similarity matrix as there are
fewer blocks to be compared. However, with the increase in
MCLT block size, the probability of finding similar blocks
under certain noise limit β decreases. In the region of interest,
φ(A,B) � 4.5dB, the likelihood of finding larger MCLT
blocks is relatively higher, thus, we restrict our analysis to
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IV. EFFECT OF THE BPM ATTACK

In this section we study the effect of the BPM attack on two
popular types of modulations used for digital watermarking:
spread-spectrum and QIM.

A. Effect of the BPM attack on spread-spectrum watermarks

In order to evaluate the effect of a BPM attack on spread-
spectrum watermarks, we conducted two experiments. For
both experiments, we used spread-spectrum watermarks that
spread over 2, 000 consecutive 256-long MCLT blocks (ap-
proximately 13s long), where only the frequency magnitudes
in the 2–7kHz sub-band were marked. We did not use chip
replication as its effect on watermark detection is orthogonal
with respect to the BPM attack.

Figure 6 shows how normalized correlation of a spread-
spectrum watermark detector drops with the increase of search
freedom β for fixed α = 1.5dB. Block substitution was
performed within the watermarked part of the signal itself
and additionally, within the following 3000 consecutive MCLT
blocks of the same audio clip with a full length of 5, 000
MCLT blocks or approximately 30 seconds.

It is important to observe the effect of the BPM attack on
synthetic (e.g., techno) and performed musical content. The
attack is far more effective on synthetic content. However
given large enough content libraries the BPM attack should
be substantially more effective for performed music. As an
example, note that the reduction in correlation due to BPM
(left ordinate in Figure 6) is strongly proportional to the
ratio of blocks actually replaced within the watermarks (right
ordinate in Figure 6. A larger substitution base directly impacts
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Fig. 6. Response of a spread-spectrum watermark detector to the BPM attack.
The abscissa depicts the increase in β for fixed α = 1.5dB and watermark
amplitude of δ = 1dB. The left ordinate shows the decrease of the normalized
correlation as β increases. The right ordinate shows the number of 256-long
MCLT blocks substituted for a 2000-block watermark within a 5000-block
audio clip.

the ratio of substituted blocks and hence proportionally affects
the correlation test.

The power of the BPM attack is most notably observed
by comparing the effect of adding a white Gaussian noise
(AWGN) pattern n = N (0, σn) of certain standard deviation
σn = [2.5 . . . 6]dB, with a BPM attack of equivalent similarity
tolerance β = σn. Whereas the dramatic effect of BPM can
be observed in Figure 6, AWGN with realistic β affects the
correlation detector only negligibly. In the latter case, the
expected correlation value remains the same E[C(x̃+n,w)] =
E[C(x̃,w)], with increased variance V ar[C(x̃ + n,w)] =
V ar[C(x̃,w)]+mσ2

n. Finally, additive noise of 4–5dB in the
2–7kHz is a relatively tolerable modification.

Figure 7 illustrates the dependency between the watermark
amplitude δ and the correlation decrease due to the BPM
attack. The parameters of the watermark codec are the same as
in the previous set of experiments. Clearly, with the increase of
watermark amplitude, the search process of the BPM attack
becomes harder for two reasons: (i) block contents become
more randomized and (ii ) the substituted blocks are more
correlated with the original blocks because β is fixed (in this
case at 6dB). Although stronger watermarks may sound like a
solution to the BPM attack, high watermark amplitudes cannot
be accepted because of two reasons: first, the requirement for
high-fidelity marked content and second, strong watermarks
can be efficiently estimated using an optimal watermark esti-
mator [3], i.e. estimate v = sign(x +w) makes an error per
bit ε = Pr[vi �= wi] = 1

2erfc(
σx

δ
√

2
) exponentially proportional

to δ.

B. Effect of the BPM attack on quantization index modulation
schemes

Quantization Index Modulation (QIM) is another type of
commonly used data hiding technology. It was introduced
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Fig. 7. Effect of watermark amplitude on the effectiveness of the BPM
attack. The abscissa depicts the amplitude δ of a spread-spectrum watermark
applied to a set of benchmark clips. The left ordinate shows the decrease
of the normalized correlation as δ increases. The right ordinate shows the
number of 256-long MCLT blocks substituted for a 2000-block watermark
within a 5000-block audio clip.

as a provably robust watermarking technique under specific
assumptions for the communication and, more importantly,
the attack model [13]. One of the features of QIM is that, as
opposed to spread-spectrum, by revealing the hidden secret,
the likelihood that the adversary can recreate the original
signal is exceptionally low. However, in almost all real-life
applications of a watermarking technology, the adversary can
afford to introduce several times greater distortion than the
data hiding agent due to much stricter requirements for high-
fidelity imposed upon the data hiding agent. In this section, we
adopt an advanced variant of QIM [13] and show the extent to
which QIM applied to audio signals is vulnerable to the BPM
attack.

One possible practical implementation of QIM is called bi-
nary spread-transform dither modulation (STDM) [13]. STDM
is illustrated in Figure 8. It uses a uniform scalar quantizer
q∆(.) of step size ∆ which is selected such that the distortion
induced by the hiding process remains lower than a constant
factor Dx. For example, 1

N ||x̃ − x||2 ≤ Dx.
When embedding a single bit of payload information, the

technique can be summarized as follows. A unit length spread-
ing vector u along with dither value d0 are chosen pseudo-
randomly, possibly using a watermarking key as seed to the
random number generator. A second dither value d1 is derived
from d0 using the following constraint:

d1 =

{
d0 +∆/2 if d0 < 0;

d0 −∆/2 otherwise.
(6)

Embedding is done by quantizing the projection of the original
signal onto u using one of the two dither values depending
on the payload bit b:

x̃ = e(x, b) = x+ (q∆(xTu+ db)− (xTu+ db))u (7)

�

x u
T ~ ( , 1)x� e x u

T

~
x�� x n+

e( , 0)~
x�e( , 1)~

x�

Fig. 8. STDM embedding process. The binary spread-transform dither
modulation embeds a bit of payload by quantizing the projection of the
original signal vector x on a random unit vector u using a given quantizer
step ∆. Two dither values are used for one bit of payload. In this figure, they
are represented by the crosses and circles. Detection is done by checking to
which quantizer the signal is closer.

At detection time, the received signal x̃′ = x̃ + n, where
n represents the noise introduced by the channel (e.g., an
attack) is compared against the quantizers and the decoded
bit b̂ corresponds to the minimal distance decoder, that is the
decoder which chooses the reconstruction point closest to the
received vector x̃′:

b̂ = argmin
i

||x̃′ − e(x̃′, i)|| =
argmin

i
||q∆(x̃′Tu+ di)− (x̃′Tu+ di)||.

(8)

In order to demonstrate the effect of the BPM attack on the
adopted QIM-based data hiding scheme, we have conducted
an experiment on our selected audio benchmark suite. In
the experiment, we chose x to be the magnitude of the
MCLT coefficients whose frequency is between 2–7kHz (in
correspondence to the spread-spectrum tests). We marked the
coefficients of the marking sub-band of the first 500 MCLT
blocks using STDM and adopted the following 4500 MCLT
blocks as a substitution base.

In the experiment, we show how the distance to the quan-
tizers changes after applying the BPM attack with increasing
similarity tolerance β. While watermarking, we impose a
fixed distortion to signal ratio of Dx = 1dB on the MCLT
coefficients in the marking sub-band. Assuming a uniform
distribution of the carrier audio signal, the desired distortion
corresponds to a quantizer step of ∆ =

√
12Dx [13].

Figure 9 illustrates how the Euclidian distance with respect
to the corresponding and opposite quantizer increases as β
increases from 2 to 9dB. For example, for a signal with
embedded ’1’, a pair of curves for each benchmark clip de-
picts the average distance for 30 different markings (different
random unit vectors u) with respect to the corresponding 1-
quantizer (the increasing curves) and the opposite 0-quantizer
(the decreasing curves). We denote as q0 and q1 the functions
that return the Euclidian distance of a given marked signal
from the corresponding and opposite quantizer respectively.
Note that the distance between a quantizer and a non-marked
signal is a random variable uniformly distributed within [0, 1].

Curves specified in the legend of Figure 9 illustrate the
average of the attacks that result in bit alteration (i.e. the
expected distance for this case is 0.75 for the corresponding
and 0.25 for the opposite quantizer). In addition, bold lines
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Fig. 9. Response of a QIM watermark detector to the BPM attack. Abscissas on both subplots depict the increase in β for fixed α = 2dB and expected
watermark distortion of Dx = 1dB. The ordinate of the left subplot shows the decrease of the normalized distance with respect to the first (d0) and second
(d1) quantizers as β increases. The ordinate of the right subplot shows the ratio of 256-long MCLT blocks of a 500-block QIM watermark replaced with
blocks from the remainder of a 5000-block audio clip as similarity tolerance increases within β = [2 . . . 9]dB.
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Fig. 10. Response of a QIM watermark detector for a fixed similarity tolerance of the BPM attack after the content has been watermark with different
strength. Each value represents an average of 50 different markings. Abscissa depicts the increase of the watermark distortion Dx. The ordinate shows the
normalized distance to both quantizers for a given similarity tolerance β = 5dB.

marked ‘�’ and ‘∇’ depict the maximal and minimal distance
from the corresponding and opposite quantizer for 30 different
tests when AWGN n ∼ N (0, β), equivalent in energy to the
BPM attack βdB, is superposed to the marked clip. Notably,
just as in the case of spread-spectrum watermarks, the effect
of the BPM attack is substantially more tangible to watermark
robustness then just AWGN of the same amplitude.

In addition, the results illustrated in Figure 9 are only a
presentation of the power of the BPM attack as the substitution
base is of very limited size (30s) for the experiments. Note
that the effect of the BPM attack proportional to the ratio
of blocks actually replaced in the clip (presented in the right
subplot of Figure 9). With a sufficiently large substitution base,
we expect that all MCLT blocks within β < 5dB can be
substituted resulting in watermark removal with a tolerable
effect on sound fidelity.

Figure 10 illustrates the dependency between the watermark
amplitude (the distortion introduced by the marking process)
and the performance decrease due to the BPM attack. The
parameters of the watermark codec are the same as in the
previous set of experiments. As expected the increase of
the watermark amplitude diminishes the effect of the attack
but, just like in the case of spread-spectrum, increasing the
amplitude of the mark to survive the attack is not possible
in practice due to the high-fidelity constraints imposed by the
content owner.

V. CONCLUSION

For any watermarking technology and any type of content,
an ultimately powerful attack is to re-record the original
content; i.e. perform again the music or capture the image
of the same original visual scene. In this paper, we simulate
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this attack: given a library of multimedia content, the BPM
attack aims at replacing small pieces of the marked content
with perceptually similar but unmarked3 substitutions from the
library. The hope is that the substitutions have little correlation
with the embedded mark. Although the attack is generic and
can be applied to all marking strategies, we demonstrate how
the BPM attack can be launched for audio content and two
traditional watermarking technologies: spread-spectrum and
quantization index modulation. From the presented experi-
mental results, we conclude that block substitution within a
30 second audio clip that creates approximately 4–5dB noise
with respect to the marked content, is sufficient to bring a
spread-spectrum correlation detector to half the expected value
without an attack. Similar adversarial effects can be obtained
against QIM-based watermarking schemes.

At this point, we identify two possible prevention strategies
against a BPM attack. For example, a data hiding primitive
may identify rare parts of the content at watermark embed-
ding time and mark only these blocks. However this reduces
significantly the practical capacity of the scheme and increases
dramatically the complexity of the embedding process. In the
case of spread-spectrum watermarks, longer watermarks and
increased detector sensitivity may enable watermark detection
at lower thresholds (τ < mδ2/5). Unfortunately, such a
solution comes at the expense of having significantly longer
watermarks which results in a significantly lowered robustness
with respect to de-synchronization attacks such as fluctuating
time- and frequency-scaling.
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