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ABSTRACT
Billions of dollars allegedly lost to piracy of multimedia con-
tent have recently triggered the industry to rethink the way
how music and movies are distributed on the Internet. As
encryption is vulnerable to digital or analog re-recording,
currently almost all copyright protection mechanisms rely to
certain extent on watermarking, i.e. hiding of imperceptive
secrets into a host signal. In this paper, we propose a new
breed of attacks on generic watermarking systems, which
recognizes that multimedia content is often highly repetitive,
identifies subsets of signal blocks that are similar, and finally
permutes these blocks. Assuming the permuted blocks have
been marked with distinct secrets, it can be shown that any
watermark detector is facing a task of exponential complex-
ity to reverse the permutations as a preprocessing step for
watermark detection. In this paper, we describe the logistics
of the attack and a recipe for its implementation against an
audio watermarking technology.

1. INTRODUCTION
As long as the movie and music industry do not find a busi-
ness model that actually benefits the consumer in down-
loading multimedia content from content publisher’s servers,
movie and music piracy is likely to reign the Internet traffic.
For example, only in the month of February 2001, Napster
has orchestrated download of almost 3 billion sound clips
from its distributed file sharing system. Simultaneously, re-
cently several industry-wide initiatives have had little suc-
cess in preventing this trend [1], [2].
The problem of ensuring copyright at the client side lies in
the fact that traditional data protection technologies such
as encryption or scrambling cannot be applied as they are
prone to digital or analog re-recording (copying). Thus, al-
most all modern copyright protection mechanisms rely to
certain extent on WMs1, imperceptive marks hidden in host
signals. Although several attack mechanisms have been largely
successful in setting up robustness benchmarks for water-
marking technologies (e.g. Stirmark [3]), in this paper, we
propose blind pattern matching attacks (BPM), a new breed
of attacks against generic WM systems. The strategy of a
BPM attack is simple:

• partition the content into overlapping low-granularity
signal blocks,

• identify subsets of perceptually similar blocks, and

• pseudo-randomly permute their locations in the signal.

As the number of perceptually unique blocks can be insuffi-
cient for a successful launch of the attack, the adversary can
alternatively seek for replacement blocks in an external large
multimedia library. The hope is that large percentage of the

1WM - watermark.

original signal will be replaced or perturbed such that WM
detection is nearly impossible. Assuming that the adver-
sary has not used an external library and that the permuted
blocks have been marked with distinct secrets, it can be
shown that any WM detector is facing a task of exponential
complexity to reverse the permutations as a preprocessing
step for correct WM detection.
Finding perceptually similar blocks of certain music or video
content is a challenging task. With no loss of generality, in
this paper we restrict our focus to audio, although video is in
many cases much better source of repetitive content within a
single recording.2 In general, repetition is often a principal
part of composing music and is a natural consequence of
the fact that distinct instruments, voices and tones are used
to create a soundtrack. Thus, it is likely to find similarities
within a single musical piece, an album of songs from a single
author, or in instrument solos. In this paper, we explore the
challenges of the BPM attack and present a recipe how it
can be launched on audio content.

1.1 Prior Art
As soon as people have tried to develop watermarking tech-
nologies, others have attempted to break them. Early ones,
such as random geometric distortions [3] relied on the fact
that most watermarking algorithms are based on some form
of correlation, which itself requires good alignment proper-
ties. Breaking this alignment usually prevents reliable de-
tection. In fact there are two main types of attacks: those
who attempt to remove the WM and those who just pre-
vent the detector from detecting them. Random geometric
distortions fall in the second category.
Attacks in the first category usually try to estimate the orig-
inal non-watermarked cover-signal and they usually consider
the WM as noise with given statistic. For instance, Lange-
laar et al. showed that 3 × 3 median filtering gives a good
approximation of original pictures in the case they have been
watermarked using spread-spectrum [4]. So far, estimate-
and-remove attacks have introduced fairly strong blurring
effects but recent work based on maximum a posteriori WM
estimation and remodulation has given promising results [5].
Unfortunately, so far most attacks have targeted still image
watermarking schemes and very few have tried to deal with
audio watermarking. Attacks on some audio watermarking
schemes include echo removal or signal restoration [6]. These
attacks are not very general as they can only be applied to
certain watermarking algorithms. An obvious improvement
for audio attacks is the equivalent of random geometric dis-
tortions. This is in fact a mixture of time and frequency
scaling. Although robustness to this type of attack is not
fully solved in the case of images, there are some audio data
hiding algorithms that can cope with them already [7].

2For example, within a common scene both background and
objects experience geometric transformations significantly
more frequently than changes in appearance.



2. THE BPM ATTACK

2.1 The Generic Approach
The BPM attack is not limited to a type of content or to
a particular watermarking algorithm. For example, systems
that modulate secrets using spread-spectrum (SS) [8] and/or
quantization index modulation [9] are all prone to the BPM
attack. In order to launch the attack successfully, the ad-
versary does not need to know the details of the WM codec.
In addition, the adversary needs to reduce the granularity of
integral blocks of data such that no block contains enough
information from which a WM can be identified individually.
Note that WM detection involves processing large amount
of data (for example, reliable and robust detection of audio
WMs requires at least several seconds of audio [7]). Thus,
blocks considered for BPM must be at least one order of
magnitude smaller than WM length. For both audio and
video, this requirement is not difficult to satisfy as typi-
cally blocks of 256-1024 transform coefficients for audio or
bitmaps of up to 64x64 pixels for video are considered for
pattern matching.
In the remainder of this section, we assume that coefficients
of the marked signal are replaced only with other coefficients
of the same signal. It is straightforward to redefine the at-
tack such that coefficients from external signal vectors are
considered as a substitution base.

The host signal to be marked x ∈ RN can be modeled as
a vector, where each element xi ∈ x is a zero-mean inde-
pendent identically distributed random variable (r.v.) with
standard deviation σx, i.e. xi ∼ N (0, σx).3 A watermark is
defined as an arbitrary pseudo-randomly generated vector
w ∈ RN , where each element wi ∈ w is a r.v. with standard
deviation δ � σx. For example, if direct sequence SS is used
for WM modulation then w ∈ {±δ}N . The WM signal w is
mutually independent with respect to x. The marked signal
y is created as y = x + w.
The BPM attack algorithm receives as input the marked
signal y and outputs its modification z. The algorithm has
several steps:
[A.] Signal partitioning. In this step, content y is parti-
tioned into a set of overlapping blocks B, where each block
Bi represents a sequence of m samples of y starting at y(Bi).

4

For an overlap ratio of η, the total number of blocks equals
n = dN−m

1−η
e. The higher the overlap, the larger the search

space for the BPM attack. We want to select the overlap
such that: (i) consecutive blocks do not have near-equivalent
perceptual characteristics and (ii) for two consecutive blocks
Bi and Bi+1 starting at y(Bi) and y(Bi+1) respectively, the
block starting at ya, a = [(Bi) + (Bi+1)]/2 is not perceptu-
ally similar to Bi or Bi+1.
[B.] The similarity function. This is the core function
of the BPM attack. It takes as an input a pair of blocks
Bi and Bj and returns a real number φ(Bi, Bj) ≥ 0 that
quantifies their similarity. Block equality is represented as
φ(Bi, Bj) = 0. The adversary can experiment with a num-
ber of different functions. In this section, we restrict simi-
larity to the quadratic euclidian distance between blocks:

φ(Bp, Bq)
2 =

m−1∑
i=0

[
yi+(Bp) − yi+(Bq)

]2
. (1)

3The BPM attack is not restricted to a particular signal
model. However, we use the Gaussian assumption to analyze
certain properties of the attack.
4(Bx) denotes the index of the first sample in block Bx.

[C.] Pattern matching. In this step, perceptual similari-
ties between individual signal blocks are identified. The re-
sult of this phase is a similarity bit-matrix S, with elements
Sp,q, p = 1..n, q = 1..n such that:

Sp,q =

{
1
0

,
,

mα2 6 φ(Bp, Bq)
2 6 mβ2

otherwise
(2)

where α2 and β2 are parameters that denote minimal and
maximal average similarity respectively, for a pair of blocks
to be considered as substitutable. The lower limit is re-
quired because substituting a block with another of excep-
tional similarity does not affect WM detection. The upper
limit is required for attack high-fidelity.
We compute the S matrix in the following way. Initially,
we compute the block-level auto-covariance of the input sig-
nal y. Then, for all pairs of blocks that correspond to a
high value of the covariance matrix, we compute the accu-
rate similarity function. The decision threshold for comput-
ing the similarity function is determined empirically. Thus,
we are able to accurately estimate the perceptual similar-
ity while retaining the algorithm complexity of an fft-based
cross-correlation at O(mnlog(n)).
Note that the computational complexity of obtaining S can
be significantly improved if we consider only block swapping.
In that case, we can consider deploying a first-degree pre-
dictor that assumes that similarity is a continuous function
and predicts that similar blocks are most often found after
already identified similar blocks.
[D.] Block substitution. In the final step, we create the
resulting attacked signal z by relocating blocks according
to the realized similarities. The substitution procedure is
presented using the following pseudo-code:
Copy z = y.
Mark all blocks in B as unvisited.
� Find first unvisited block Bi s.t. ∃j 6= i|Si,j = 1.
Let G ⊂ B s.t. (∀Bj ∈ G)Si,j = 1 or i = j.
Let L be a random permutation of elements in G.
Reorder blocks of z with indices G according to L.
Mark blocks with indices in G as visited.
GO TO �

The effectiveness of the BPM depends on several factors.
First, block size is a variable with an important trade-off. It
is difficult to find large similar blocks, so the search clearly
benefits from smaller blocks. On the other hand, it is diffi-
cult to estimate perceptual factors in small blocks. In addi-
tion, smaller blocks tend to preserve higher correlation be-
tween the original and the substitute that reduces the effect
of BPM on the reliability of the WM detector. On the exam-
ple of audio, we elaborate on this trade-off more in the next
section. Second, the content itself may have little redun-
dancy regardless of block size and relative looseness of the
upper bound on similarity β. In that case, the adversary
needs to search a larger database of content in hope that
similar sounds or pixel-maps can be found. Finally, what is
a proper minimal value of the lower bound α which allows
that substituted content actually affects the WM detector?
Lets assume that vector x + w is deemed similar to and is
replaced by vector y + v, where x and y are original sig-
nals marked with two distinct WMs w and v. All vectors
are assumed to be of the size of a single block m. In ad-
dition, we assume that the WMs are SS sequences, which
means that WM w is detected in a signal z by matched fil-
tering: C(z, w) = z · w =

∑m
i=1 ziwi. If z has been marked

with w, E[C(z, w)] = m, else E[C(z, w)] = 0, with variance
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Figure 1: MCLT blocks of a signal x created starting from coefficient x0, x8, x128, and x2048. MCLT block
length is 2048 frequency coefficients. As block contents change little if the shift is smaller than 512 samples
(at sampling rate of 44kHz), we adopt η = 0.25.

V ar[C(z, w)] = σz
√

m. WM is detected if C(z, w) is greater
than certain detection threshold δT . In order to have sym-
metric probability of a false alarm and misdetection, δT is
commonly set to m/2.
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Figure 2: Similarity computation for a 30 second au-
dio clip and 5 random 256-long MCLT blocks. Even
in this small test clip by Pink Floyd, for 2 out of
5 blocks at least one substitution block within 4dB
relative noise was found.

From the requirement for two blocks to be eligible for sub-
stitution in Eqn.2:

mα2 6
m∑

i=1

[(yi + vi)− (xi + wi)]
2 6 mβ2 (3)

we can compute the expected resulting correlation E[C(y +
v, w)] under the assumption that vectors v and w are inde-
pendent with respect to x and y:5

E[C(y + v, w)] = E

[
m∑

i=1

(yi + vi)wi

]
6

6 E

[
1

2

m∑
i=1

(yi − xi)
2

]
+ m(δ2 − α2

2
)

(4)

where δ is WM amplitude |v| = |w| = δ. Assuming that
there exists true repetition of the original content (y = x),
then setting α > δ

√
2 would set the expected minimum cor-

relation to zero after substitution.

5E[C(y, v)] = E[C(x, v)] = E[C(y, w)] = E[C(x, w)] = 0.

2.2 The BPM Against Marked Audio
In this section, we demonstrate how the generic principles
behind the BPM attack can be applied against an audio wa-
termarking technology. WM length is assumed to be greater
than one second. Since most psycho-acoustic models are
operating in the frequency spectrum, we launch the BPM
attack in the logarithmic (dB) frequency domain. The set
of signal blocks B is created from the coefficients of a mod-
ulated complex lapped transform [11]. Considered MCLT
analysis blocks can potentially range in size from 256 to
1024 coefficients with an η = 0.25 overlap. Figure 1 depicts
how MCLT block content changes as its 2048-long analysis
window shifts for 8, 128, and 2048 samples (content sampled
at 44.1kHz). Each block of coefficients is psycho-acoustically
masked using [11]. Similarity is explored exclusively in the
audible part of the frequency spectrum. Because of psycho-
acoustic masking, the similarity function is not commuta-
tive. The second operand of the function (substitution) is
always masked with the psycho-acoustic mask of the first
operand in addition to its own masking.

Noise margin β [dB]
Music 3 3.5 4 4.5 5 5.5 6

Techno 6 10 23 46 80 83 98
Jazz 0 4 13 38 77 98 98
Rock 0 0 3 44 87 100 100
Voice 0 1 7 38 83 96 98

Classical 0 1 12 50 81 98 99

Table 1: Similarity results for five typical pop, jazz,
and classical 30 second soundtracks. Columns 2-
8 present the percentage of 256-long MCLT blocks
that are substitutable with other blocks from the
same 30 second clip if the substitute is within β =
{3..6}dB. Only the 2-7kHz subband was considered
for block substitution.

We performed two types of experiments in order to evalu-
ate the effectiveness of the BPM attack. The first set of
experiments aimed at quantifying the amount of similarity
between blocks of several audio clips. As an example, Figure
2 shows the similarity matrix for five randomly selected 256-
long MCLT blocks within a 30 second Pink Floyd song. For
the illustrated data, 2 out of 5 MCLT blocks could be substi-
tuted with other MCLT blocks that are within β = 4dB. In
the example, block similarity was computed over the entire
frequency spectrum. However, WMs are usually embedded
within certain relatively narrow subband which may only
improve the matching results [7]. Similarly, Table 1 shows
that on a sample of 5 typical pop, rock, jazz, and classical
music pieces, almost regularly half the MCLT blocks were
substitutable with other blocks from the same 30 second clip



within a noise margin of β = 4.5dB.
The second set of experiments aimed to establish how sub-
stitutions affect a traditional SS watermarking technology.
Figure 3 shows how correlation of a SS detector drops with
the increase of search freedom β. Note that the results pre-
sented consider auto-correlations within a 30 second rock
music clip. For longer clips and especially substitution li-
braries, results should be substantially better. Also, note
that adding a white noise pattern of considered β dB affects
the correlation detector negligibly. Finally, additive noise of
4-5dB in the 2-7kHz is a relatively tolerable modification.
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Figure 3: Response of a SS WM detector to the
BPM attack. X-axis depicts the increase in β for
fixed α = 1.5dB and WM amplitude of 1dB. The left
Y-axis shows the decrease of the normalized corre-
lation as β increases. The right Y-axis shows the
number of 256-blocks substituted for a 2000-block
WM within a 5200-block audio clip.

For the same experimental set-up, Figure 4 shows the de-
pendency between WM amplitude and correlation decrease
due to the BPM attack. Clearly, with the increase of wa-
termark amplitude, the search process of the BPM attack
becomes harder for two reasons: (i) block contents become
more randomized and (ii) the substituted blocks are more
correlated with the original blocks because β is fixed (in
this case at 5dB). Although, stronger WMs may sound like
a solution to the BPM attack, extreme values cannot be ac-
cepted because of the requirement for high-fidelity marked
content and because, in this case, WM estimation becomes
an effective anti-WM tool.

3. CONCLUSION
For any watermarking technology and any type of content,
an ultimately powerful attack is to re-record the original
content value; i.e. play again the music or capture the same
original image. In this paper, we simulate this attack: given
a library of multimedia content, the BPM attack aims at re-
placing small pieces of the marked content with perceptually
similar but unmarked6 substitutions from the library. The
hope is that the substitutions have little correlation with the
embedded mark. Although the attack is generic and can be
applied to all marking strategies, we demonstrate how the
BPM attack can be launched for audio content and a tra-
ditional SS watermarking technology. From the presented
experimental results, we conclude that block substitution
that creates approximately 4dB noise with respect to the

6Or marked with a different WM.

marked content, is sufficient to bring a SS correlation detec-
tor to half the expected value without an attack.
At this point, the only prevention against the BPM attack
would be to identify rare parts of the content at WM em-
bedding time and mark only these blocks.
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Figure 4: Effect of WM amplitude on the effective-
ness of the BPM attack. X-axis depicts the ampli-
tude δ of a SS WM applied to a rock song. The left
Y-axis shows the decrease of the normalized corre-
lation as δ increases. The right Y-axis shows the
number of 256-blocks substituted for a 2000-block
WM within a 5200-block audio clip.
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